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Abstract: In this paper we present the Crank-Nicolson finite difference scheme for space fractional radon 

diffusion equation (SFRDE) in soil medium. We discuss that the scheme is unconditionally stable and 

convergence of the scheme is also verified at the length. Validation of the solution is carried out with the help of 

graphical illustration using ‘Mathematica’ software. 
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I. INTRODUCTION 

 
        The Fractional Calculus (FC) is a generalization of classical calculus concerned with operations of integration and 

differentiation of non-integer (fractional) order. The concept of fractional operators has been introduced almost 

simultaneously with the development of the classical ones. The study of fractional calculus has been a highly 

specialized and isolated field of mathematics. The fractional calculus was recognized to represent an useful tool 

for understanding and modeling many natural and artificial phenomena. Fractional calculus has many 

applications in biology, physics, engineering, economics etc. [1,2,6]. Most of the fractional differential 

equations do not have analytical solution therefore approximation and numerical techniques are developed. 

There are many numerical methods to find the solution of classical differential equations, while numerical 

methods for the fractional differential equations are very limited. As the fractional derivatives are the 

generalization of classical derivatives, the numerical techniques for the classical differential equations can be 

extended to the fractional differential equations in some way. In the recent years, there are many numerical 

techniques like finite difference method (FDM), finite element method (FEM), He’s variational iterational 

method, Adomian decomposition method (ADM), matrix transform method (MTM), etc. Finite difference 

method is very rich and continuous to be developed. Also this method is very powerful tool and widely used to 

solve the differential equations as well as fractional differential equations in science and engineering. The main 

cause of implementation of this method is simple and easy to be put into practice in computer programs. Many 

papers have recently published on finite difference methods for solving the diffusion equation [3,4,78,9,10,11]. 

             In this paper we discuss the fractional radon diffusion equation in soil medium. The diffusion theory 

came from the famous physiologist Adolf Fick. He stated that the flux density J is proportional to the gradient 

of concentration. This gives,       

J = −𝐷
∂C

∂t
                                                                             (1.1) 

where J is the radon flux density is diffusion coefficient , 
∂C

∂t
  is gradient of radon concentration and D is 

diffusivity coefficient of radon. Now the change in concentration to change in time and position is stated by the 

Fick’s second law which is the extension of Fick’s first law, that gives, 

                                                                
∂C(x,t)

∂t
=
𝜕2C(x,t)

𝜕𝑡2
− 𝜆c(x, t)                                                            (1.2) 

where 𝜆 = 2.1×10−6𝑠−1 is the decay constant. Many researchers have discussed the radon transport through 

soil, activated charcoal, concrete, etc. [5,12,13,14,15,16]. 

             Here, we develop the space fractional crank-nicolson finite difference method for fractional order RDE  

in soil medium. We consider the following space fractional radon diffusion equation [SFRDE], 
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  𝜕C(x,t)

𝜕𝑡
= 𝐷

𝜕𝛽C(x,t)

𝜕𝑡𝛽
 − 𝜆C(x, t), 0 < 𝑥 < 𝐿, 1 < 𝛽 ≤ 2, 𝑡 ≥ 0 , (𝑥, 𝑡) ∈ [0, 𝐿] × [0, 𝑇]                       (1.3)                                  

initial conditions: 𝐶(𝑥, 0) = 0, 0 < 𝑥 < 𝐿                                                                                                    (1.4)   

boundary conditions: 𝐶(0, 𝑡) = 𝑐0 𝑎𝑛𝑑 
∂C(x,t)

∂t
= 0, 𝑡 ≥ 0                                                          (1.5)  

 Definition1.1:-The Grunwald Letnikov space fractional derivative of order 𝛽 is defined by, 

𝜕𝛽C(x, t)

𝜕𝑥𝛽
= 𝑜𝐷𝑥

𝛽
𝐶(𝑥, 𝑡) =  

1

ℎ𝛽
lim
𝑁→∞

∑
Γ(𝑗 − 𝛽)

Γ(−𝛽)Γ(𝑗 + 1)

𝑁

𝑗=0

𝐶(𝑥 − (𝑗 − 1)ℎ, 𝑡)                                        

                                                 =
1

ℎ𝛽
lim
𝑁→∞

∑ 𝑔𝛽,𝑗𝐶(𝑥 − (𝑗 − 1)ℎ, 𝑡)
𝑁
𝑗=0  

where 

 𝑔𝛽,𝑗 =
Γ(𝑗−𝛽)

Γ(−𝛽)Γ(𝑗+1)
                              

              We organize the paper as follows: Section 2 is devoted for to develop Crank-Nicolson finite difference 

scheme for space fractional radon diffusion equation. In section 3, we discuss the stability of the approximated 

solution obtained by Crank-Nicolson finite difference scheme developed for fractional radon diffusion equation. 

In section 4, we discuss the convergence of the scheme. In the last section we solved test problem and their 

solution is represented graphically by mathematical software Mathematica. 

                

II. FINITE DIFFERENCE SCHEME 

              In this section, we develop the space fractional Crank-Nicolson finite difference method for fractional 

order radon diffusion equation (1.3)-(1.5). 

We define, 

𝑡𝑘 = 𝑘𝜏 ;  𝑘 = 0,1,2, … ,𝑁 𝑎𝑛𝑑 𝑥𝑖 = 𝑖ℎ ;  𝑖 = 0,1,2,… ,𝑀  
where 

𝜏 =
𝑇

𝑁
  𝑎𝑛𝑑 ℎ =

𝐿

𝑀
 

Let 𝐶(𝑥𝑖,𝑡𝑘); 𝑖 = 0,1,2, … ,𝑀 𝑎𝑛𝑑 𝑘 = 0,1,2,… ,𝑁 be the exact solution of space fractional radon diffusion 

equation (SFRDE) (1.3)-(1.5) at mesh point(𝑥𝑖,𝑡𝑘). Let 𝑐𝑖
𝑘 be the numerical approximation of the 

point 𝐶(𝑥𝑖,𝑡𝑘).  

            We consider the spatial 𝛽 − 𝑜𝑟𝑑𝑒𝑟 fractional derivative using the Grunwald finite difference formula at 
all-time levels. The standard Grunwald estimates generally yields unstable finite difference equation regardless 

of whatever results in finite difference method is an explicit or implicit system for related discussion. Therefore, 

we use a right shifted Grunwald formula to estimate the spatial 𝛽 − 𝑜𝑟𝑑𝑒𝑟 fractional derivative. 
For  

𝜕𝛽C(x, t)

𝜕𝑥𝛽
= o𝐷𝑥

𝛽
𝐶(𝑥, 𝑡) =

1

ℎ𝛽
∑𝑔𝛽,𝑗𝐶(𝑥𝑖−(𝑗−1)ℎ, 𝑡𝑘+1) + 𝑂(ℎ

2)

𝑖+1

𝑗=0

 

and the normalized Grunwald weights are given by, 

𝑔𝛽,0 = 1 𝑎𝑛𝑑 𝑔𝛽,𝑗 = (−1)
𝑗
𝛽(𝛽 − 1)… (𝛽 − 𝑗 + 1)

𝑗!
 , 𝑗 = 1,2,3, … 

Using forward difference formula for time, right shifted Grunwald formula for second order space. Therefore, 

Crank-Nicolson type numerical approximation to equation (1.3) is given as follows- 

 

[
𝐶𝑖
𝑘+1 − 𝐶𝑖

𝑘

𝜏
] = 𝐷

1

2ℎ𝛽
[∑𝑔𝛽,𝑗

𝑖+1

𝑗=0

𝐶𝑖−𝑗+1
𝑘+1 +∑𝑔𝛽,𝑗

𝑖+1

𝑗=0

𝐶𝑖−𝑗+1
𝑘 ] − 𝜆 𝐶𝑖

𝑘+1 

 

 

[𝐶𝑖
𝑘+1 − 𝐶𝑖

𝑘] = 𝐷
𝜏

2ℎ𝛽
[∑𝑔𝛽,𝑗

𝑖+1

𝑗=0

𝐶𝑖−𝑗+1
𝑘+1 +∑𝑔𝛽,𝑗

𝑖+1

𝑗=0

𝐶𝑖−𝑗+1
𝑘 ] − 𝜆 𝜏 𝐶𝑖

𝑘+1 

let 

 𝑟 = 𝐷
𝜏

2ℎ𝛽
 𝑎𝑛𝑑 𝜇 = 𝜆 𝜏 
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[𝐶𝑖
𝑘+1 − 𝐶𝑖

𝑘] = 𝑟 [∑𝑔𝛽,𝑗

𝑖+1

𝑗=0

𝐶𝑖−𝑗+1
𝑘+1 +∑𝑔𝛽,𝑗

𝑖+1

𝑗=0

𝐶𝑖−𝑗+1
𝑘 ] − µ 𝐶𝑖

𝑘+1 

 

                                     (1 + µ)𝐶𝑖
𝑘+1 − 𝑟 ∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0 𝐶𝑖−𝑗+1

𝑘+1 = 𝐶𝑖
𝑘 + 𝑟∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0 𝐶𝑖−𝑗+1

𝑘                               (2.1) 

 (1 + µ)𝐶𝑖
𝑘+1 − 𝑟𝑔𝛽,1𝐶𝑖

𝑘+1 − 𝑟 ∑ 𝑔
𝛽,𝑗

𝑖+1

𝑗=0,𝑗≠1

𝐶𝑖−𝑗+1
𝑘+1 = 𝐶𝑖

𝑘 + 𝑟𝑔𝛽,1𝐶𝑖
𝑘 + 𝑟 ∑ 𝑔

𝛽,𝑗

𝑖+1

𝑗=0,𝑗≠1

𝐶𝑖−𝑗+1
𝑘  

 

since 𝑔𝛽,1 = −𝛽   

                  (1 + µ + 𝑟𝛽)𝐶𝑖
𝑘+1 − 𝑟 ∑ 𝑔

𝛽,𝑗
𝑖+1
𝑗=0,𝑗≠1 𝐶𝑖−𝑗+1

𝑘+1 = (1 − 𝑟𝛽)𝐶𝑖
𝑘 + 𝑟∑ 𝑔

𝛽,𝑗
𝑖+1
𝑗=0,𝑗≠1 𝐶𝑖−𝑗+1

𝑘                   (2.2) 

Therefore, the complete discretized problem is: 

 
 (1 + 𝑟𝛽 + µ) 𝐶𝑖

1 −  𝑟 ∑ 𝑔𝛽,𝑗
𝑖+1
𝑗=0,𝑗≠1 𝐶𝑖−𝑗+1

1 = (1 − rβ)𝐶𝑖
0 + 𝑟∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0,𝑗≠1 𝐶𝑖−𝑗+1,

0                     𝑓𝑜𝑟 𝑘 = 0                 (2.3) 

  

 (1 + 𝑟𝛽 + µ)𝐶𝑖
𝑘+1 − 𝑟 ∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0,𝑗≠1 𝐶𝑖−𝑗+1

𝑘+1 = (1− 𝑟𝛽)𝐶𝑖
𝑘
+ 𝑟 ∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0,𝑗≠1 𝐶𝑖−𝑗+1

𝑘                 𝑓𝑜𝑟 𝑘 ≥ 1                                  (2.4) 

 

initial conditions, 𝐶𝑖
0, 𝑖 = 0,1,2, … ,𝑀                                                                                                 (2.5)                                                                                               

boundary conditions, 𝐶0
𝑘 = 𝐶0  and 𝐶𝑀+1

𝑘 = 𝐶𝑀−1
𝑘 . ; 𝑘 = 0,1,2, … ,𝑁                                                (2.6)                                

and 𝑟 = 𝐷
𝜏

2ℎ𝛽
 ;  𝜇 = 𝜆 𝜏 

The matrix form of the above initial boundary value problem is  

                             AC1 = BC0 + S ; for k = 0                                                  (2.7) 

     

                      ACk+1 = BCk + 𝑆′, 𝑓𝑜𝑟 𝑘 ≥ 1                                                              (2.8) 
               

where 

𝐴 =

(

 
 

1 + 𝑟𝛽 + µ −𝑟𝑔𝛽,0         ⋯⋯         ⋯⋯⋯              ⋯⋯⋯ ⋯

    −𝑟𝑔𝛽,2            1 + 𝑟𝛽 + µ   −𝑟𝑔𝛽,0 ⋯⋯⋯             ⋯⋯⋯ ⋮
−𝑟𝑔𝛽,3
⋮

−𝑟𝑔𝛽,𝑀
          

  −𝑟𝑔𝛽,2
⋮

−𝑟𝑔𝛽,𝑀−1

1 + 𝑟𝛽 + µ  
⋮

⋯⋯

−𝑟𝑔𝛽,0
⋱

⋯⋯⋯

            ⋯⋯⋯
⋱

−𝑟(𝑔𝛽,0 + 𝑔𝛽,2)

⋮
⋮

1 + 𝑟𝛽 + µ)

 
 
;                

 

 
  

𝐵 =    

(

  
 

(1 − rβ)                   𝑟𝑔𝛽,0                     ⋯⋯ ⋯⋯⋯               ⋯⋯⋯ ⋯

   𝑟𝑔𝛽,2                     (1 − rβ)             𝑟𝑔𝛽,0 ⋯⋯⋯             ⋯⋯⋯ ⋮
       𝑟𝑔𝛽,3
               ⋮
          𝑟𝑔𝛽,𝑀

                          𝑟𝑔𝛽,2
                 ⋮

                       𝑟𝑔𝛽,𝑀−1

            (1 − rβ)
        ⋮

           ⋯⋯

−𝑟𝑔𝛽,0
⋱

       ⋯ ⋯⋯
   

     ⋯⋯⋯
⋱

𝑟(𝑔𝛽,0 + 𝑔𝛽,2)

⋮
⋮

(1 − rβ))

  
 
; 

 

 

𝑆 =

(

 
 
 
 
 
 

𝑟𝑔
𝛽,2
𝐶0
1 + 𝑟𝑔

𝛽,2
𝐶0
0

𝑟𝑔
𝛽,3
𝐶0
1 + 𝑟𝑔

𝛽,3
𝐶0
0

𝑟𝑔
𝛽,4
𝐶0
1 + 𝑟𝑔

𝛽,4
𝐶0
0

⋮
⋮

𝑟𝑔
𝛽,𝑀+1

𝐶0
1 + 𝑟𝑔

𝛽,𝑀+1
𝐶0
0
)

 
 
 
 
 
 

; 𝑆′ =

(

 
 
 
 
 
 

𝑟𝑔
𝛽,2
𝐶0
𝑘+1 + 𝑟𝑔

𝛽,2
𝐶0
𝑘

𝑟𝑔
𝛽,3
𝐶0
𝑘+1 + 𝑟𝑔

𝛽,3
𝐶0
𝑘

𝑟𝑔
𝛽,4
𝐶0
𝑘+1 + 𝑟𝑔

𝛽,4
𝐶0
𝑘

⋮
⋮

𝑟𝑔
𝛽,𝑀+1

𝐶0
𝑘+1 + 𝑟𝑔

𝛽,𝑀+1
𝐶0
𝑘
)

 
 
 
 
 
 

 

𝐶𝑘 = [𝑐1
𝑘 , 𝑐2

𝑘 , 𝑐3
𝑘 , ……… . , 𝑐𝑁

𝑘]
𝑇
; 𝑟 = 𝐷

𝜏

2ℎ𝛽
 ;  𝜇 = 𝜆 𝜏; , 𝑖 = 0,1,2, … ,𝑀; 𝑘 = 0,1,2, … ,𝑁; 

       

𝑔𝛽,0 = 1 𝑎𝑛𝑑 𝑔𝛽,𝑗 = (−1)
𝑗
𝛽(𝛽 − 1)… (𝛽 − 𝑗 + 1)

𝑗!
 , 𝑗 = 1,2,3, … 

 

III. STABILITY 

Theorem 3.1: The solution of approximated initial boundary value problem (2.3)-(2.6) for space fractional 

radon diffusion equation (SFRDE) (1.3)-(1.5) is unconditionally stable. 

Proof: We assume that, ||𝐸𝑘||∞ ≤ |𝜖𝑙
𝑘|  = max

1≤𝑖≤𝑀
𝜖𝑖
𝑘 

http://www.jetir.org/


© 2023 JETIR January 2023, Volume 10, Issue 1                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2301109 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b56 
 

Therefore, for k=0, from equation (2.3), we get 

|𝜖𝑙
1| = |(1 + 𝑟𝛽 + µ)𝜖𝑖

1 − 𝑟 ∑ 𝑔𝛽,𝑗

𝑖+1

𝑗=0,𝑗≠1

𝜖𝑖−𝑗+1
1 |  

        =|(1 − rβ)𝜖𝑖
0 + 𝑟∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0,𝑗≠1 𝜖𝑖−𝑗+1

0 |         

                     ≤ |1 − 𝑟𝛽 + 𝑟∑ 𝑔𝛽,𝑗
𝑖+1
𝑗=0,𝑗≠1 |𝜖𝑙

0 ;         ∵ ( 𝑔𝛽,1 = −𝛽)   

                         

                                ≤ |𝜖𝑙
0| ;           ∵  ( ∑ 𝑔𝛽,𝑗 < 0 ⟹ 1 + 𝑟∑𝑔𝛽,𝑗 < 1)                

Therefore, 

||𝐸1||∞ ≤ ||𝐸
0||∞ 

Thus, the result is true for k = 0.  

Suppose that, the result is true for k, 
||𝐸𝑘||∞ ≤ ||𝐸

0||∞ 
To prove that the result is true for k+1, from equation (2.4), we have 

 

|𝜖𝑙
𝑘+1| = |(1 + 𝑟𝛽 + µ)𝜖𝑖

𝑘+1 − 𝑟 ∑ 𝑔𝛽,𝑗

𝑖+1

𝑗=0,𝑗≠1

𝜖𝑖−𝑗+1
𝑘+1 |  

        =|(1 − rβ)𝜖𝑖
𝑘 + 𝑟∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0,𝑗≠1 𝜖𝑖−𝑗+1

𝑘 |         

                     ≤ |1 − 𝑟𝛽 + 𝑟∑ 𝑔𝛽,𝑗
𝑖+1
𝑗=0,𝑗≠1 |𝜖𝑙

0 ;        ∵  ( 𝑔𝛽,1 = −𝛽)   

                         

                                ≤ |𝜖𝑙
0| ,                 ∵ ( ∑ 𝑔𝛽,𝑗 < 0 ⟹ 1 + 𝑟∑𝑔𝛽,𝑗 < 1 )              

Therefore, 

||𝐸𝑘+1||∞ ≤ ||𝐸
0||∞ 

Thus, the result is true for k+1. 

Hence by mathematical induction, the result is true for all k.   

||𝐸𝑘+1||∞ ≤ ||𝐸
0||∞ 

Thus, the scheme is unconditionally stable. 
 
IV. CONVERGENCE 

           In this section, we discuss the convergence of the approximate finite difference scheme (2.3) - (2.6). Let 

𝐶(𝑥𝑖 , 𝑡𝑘) be the exact solution of the SFRDE (1.3)-(1.5) and 𝐶𝑖
𝑘 be the exact solution of the discrete 

equation (2.3)-(2.6) at the mesh point(𝑥𝑖 , 𝑡𝑘), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1,… ,𝑀 − 1; 𝑘 = 1,2,… ,𝑁. 

We define,𝑒𝑖
𝑘 = 𝐶(𝑥𝑖 , 𝑡𝑘) − 𝐶𝑖

𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1, … ,𝑀 − 1; 𝑘 = 1,2,… , 𝑁 and 𝐸𝑘 = (𝑒1
𝑘, 𝑒2

𝑘, … , 𝑒𝑀−1
𝑘 ) 

 

Theorem 4.1 The fractional order Crank-Nicolson finite difference scheme (2.3)-(2.6) for SFRDE (1.3)-(1.5) is 

convergent and the solution Ci
k of the discretize scheme (2.3)-(2.6) and the solution C(xi, tk)  of the equation 

(1.3)-(1.5) satisfy, 

||𝐶(𝑥𝑖 , 𝑡𝑘) − 𝐶𝑖
𝑘||  ≤ ||𝐸||∞ + 𝑂 (𝜏 + ℎ

2−𝛽); 𝑖 = 0,1,… ,𝑀 − 1; 𝑘 = 0,1, … ,𝑁 

Proof: Let us assume that, 

|𝑒𝑙
𝑘|  = max |

1≤𝑖≤𝑀−1
∈𝑖
𝑘 | = ||𝐸||

∞
; 𝑓𝑜𝑟 𝑙 = 1,2,… 

 

and  

𝑇𝑙
𝑘 = max |
          1≤𝑖≤𝑁

𝑇𝑖
𝑘 | ; 𝑇𝑗

𝑛 = ℎ2[𝑂(𝜏) + 𝑂(ℎ2−𝛽)] 

Therefore, from equation (4.1), we have 

|𝑒𝑙
1| = |(1 + 𝑟𝛽 + µ)𝑒𝑖

1 − 𝑟 ∑ 𝑔𝛽,𝑗

𝑖+1

𝑗=0,𝑗≠1

𝑒𝑖−𝑗+1
1 |  

        =|(1 − rβ)𝑒𝑖
0 + 𝑟∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0,𝑗≠1 𝑒𝑖−𝑗+1

0 |         

                    ≤ |1 − 𝑟𝛽 + 𝑟∑ 𝑔𝛽,𝑗
𝑖+1
𝑗=0,𝑗≠1 |𝑒𝑙

0 ;  𝑠𝑖𝑛𝑐𝑒 𝑔𝛽,1 = −𝛽   

                         

                                ≤ |𝑒𝑙
0|, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 ∑𝑔𝛽,𝑗 < 0 ⟹ 1+ 𝑟∑𝑔𝛽,𝑗 < 1                
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Therefore, 

||𝐸1||∞ ≤ ||𝐸
0||∞ + ℎ

2[𝑂(𝜏) + 𝑂(ℎ2−𝛽)] 
Suppose that 

||𝐸𝑘||∞ ≤ ||𝐸
0||∞ + ℎ

2[𝑂(𝜏) + 𝑂(ℎ2−𝛽)] 
From equation (2.4), we have 

 

|𝑒𝑙
𝑘+1| = |(1 + 𝑟𝛽 + µ)𝑒𝑖

𝑘+1 − 𝑟 ∑ 𝑔𝛽,𝑗

𝑖+1

𝑗=0,𝑗≠1

𝑒𝑖−𝑗+1
𝑘+1 |  

        =|(1 − rβ)𝑒𝑖
𝑘 + 𝑟∑ 𝑔𝛽,𝑗

𝑖+1
𝑗=0,𝑗≠1 𝑒𝑖−𝑗+1

𝑘 |         

                     ≤ |1 − 𝑟𝛽 + 𝑟∑ 𝑔𝛽,𝑗
𝑖+1
𝑗=0,𝑗≠1 |𝑒𝑙

𝑘  ;  𝑠𝑖𝑛𝑐𝑒 𝑔𝛽,1 = −𝛽   

                         

                                ≤ |𝑒𝑙
𝑘|, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 ∑𝑔𝛽,𝑗 < 0 ⟹ 1+ 𝑟∑𝑔𝛽,𝑗 < 1                

Therefore, 

||𝐸𝑘+1||∞ ≤ ||𝐸
0||∞ + ℎ

2[𝑂(𝜏) + 𝑂(ℎ2−𝛽)] 
Hence by mathematical induction, the result is true for all k.   

||𝐸𝑘||∞ ≤ ||𝐸
0||∞ + ℎ

2[𝑂(𝜏) + 𝑂(ℎ2−𝛽)] 
This shows that fractional finite difference scheme (2.3)-(2.6) for SFRDE (1.3)-(1.5) is convergent. 

 

V. NUMERICAL SOLUTION 

The approximated solution of space fractional radon diffusion equation in soil medium with initial and 

boundary conditions is achieved. The numerical solution of the space fractional radon diffusion equation 

(SFRDE) by the finite difference scheme is validated by using software, it is important to use some analytical 

model. Therefore, we have solved the problem at specific particular conditions by using Mathematica Software. 

We consider the following, dimensionless space fractional radon diffusion equation with suitable initial and 

boundary conditions. 

 

  𝜕C(x, t)

𝜕𝑡
= 𝐷

𝜕𝛽C(x, t)

𝜕𝑡𝛽
 − 𝜆C(x, t), 0 < 𝑥 < 𝐿, 1 < 𝛽 ≤ 2, 𝑡 ≥ 0 , (𝑥, 𝑡) ∈ [0, 𝐿] × [0, 𝑇] 

                                   initial condition: 𝐶(𝑥, 0) = 0,0 < 𝑥 < 𝐿 

                                   boundary conditions: 𝐶(0, 𝑡) = 𝑐0 𝑎𝑛𝑑 
∂C(x,t)

∂t
= 0, 𝑡 ≥ 0 

with the radon diffusion coefficient 𝐷 = 4.1 × 10−7𝑚2 𝑠⁄ . The numerical solutions obtained at t = 0.05 by 

considering the parameters 𝐿 = 1.7278𝑐𝑚 , 𝜆 = 2.1 × 10−6𝑠−1, 𝜏 = 0.05, 𝑘 = 4𝑚2 𝑘𝑔⁄ , 
𝜌 = 0.5 𝑔 𝑐𝑚3⁄ , 𝑐0 = 200𝐵𝑞 𝑚

3⁄ , 𝑐(0, 𝑡) = 40 × 103,     𝛼 = 0.9, 𝛼 = 0.8  is simulated in the following 

figure,                                     

 
          Fig. The approximate solution of radon diffusion equation for 𝛼 = 0.9 𝑎𝑛𝑑 𝛼 = 0.8 

 

VI. CONCLUSION   

            We successfully develop the fractional order Crank-Nicolson finite difference scheme for space 

fractional radon diffusion equation. Furthermore we discuss its stability and convergence of the scheme. As an 

application of this method we obtain the numerical solution of text problem and its solution is simulated 

graphically by mathematical software Mathematica.     
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